skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anker, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fault-tolerant syndrome extraction is a key ingredient in implementing fault-tolerant quantum computation. While conventional methods use a number of extra qubits that are linear in the weight of the syndrome, several improvements have been introduced using flag gadgets. In this work, we develop a framework to design flag gadgets using classical codes. Using this framework, we show how to perform fault-tolerant syndrome extraction for any stabilizer code with arbitrary distance using exponentially fewer qubits than conventional methods when qubit measurement and reset are relatively slow compared to a round of error correction. In particular, our method requires only ?? flag qubits to fault-tolerantly measure a weight ? stabilizer. We further take advantage of the saving provided by our construction to fault-tolerantly measure multiple stabilizers using a single gadget and show that it maintains the same exponential advantage when it is used to fault-tolerantly extract the syndromes of quantum low-density parity-check codes. Using the developed framework, we perform computer-assisted search to find several small examples where our constructions reduce the number of qubits required. These small examples may be relevant to near-term experiments on small-scale quantum computers. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025